
Journal of Appl, ed Mechantcs and Technical Physics, Vol. 38, No. 3, 1997 

S O L U T I O N  OF T H E  P R O B L E M  OF O P T I M A L  C O N T R O L  F O R  H E A T I N G  

OF A O N E - D I M E N S I O N A L  P L A T E  A N D  ITS A S Y M P T O T I C  B E H A V I O R  

A .  V .  K u z n e t s o v  UDC 536.242 

In recent years, many papers on optimization problems of heat and mass transfer [1-6] have been 
published. This interest is due to the importance of these problems for comprehension of heat- and mass- 
transfer processes and also in practical applications. 

In the present paper, the classical problem of heating a one-dimensional plate is considered. One side 
of the plate is in contact with a well-mixed fluid layer. A constant temperature is maintained at the other 
side. The plate is heated by heat generation in the fluid layer (for example, by a heating element). Solutions 
of this problem under various initial and boundary conditions were considered by Carslaw and Jaeger [7]. 

We propose to approach this well-known problem from the viewpoint of optimal control. We have 
to find the optimal intensity of heat generation in a fluid that allows one to maximize the amount of heat 
accumulated in the plate at the moment of termination of the heating process. The natural constraints for 
the problem are the given amount of heat which can be generated in the fluid during the process, the fixed 
duration of the process, and the given minimum and maximum intensities of heat generation in the fluid. The 
Pontryagin maximum principle is used to solve it. As far as the author knows, the present paper is the first 
at tempt to calculate the optimal intensity of heat generation in such a system. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  Let us consider a one-dimensional plate one side of which (z' = L, 
where L is the thickness of the plate) is in contact with a well-mixed fluid (or a fluid of infinite thermal 
conductivity). Boundary conditions of the fourth kind, i.e., the equality of temperatures and heat fluxes, are 
assumed at the contact boundary. Let Mf denote the fluid mass per unit surface of the plate and c /deno te  
the specific heat of the fluid. Heat is generated in the fluid. The intensity of this generation per unit surface 
of the plate is a function of t ime Q(t~). It is assumed that  the fluid releases heat only to the plate. In this 
case, the boundary condition for z' = L can be written in the following form [7]: 

OT OT 
k + Mscs = Q(t'), 

where T is the temperature, k is the thermal conductivity of the plate, t ~ is the time, and x ~ is the linear 
coordinate. 

The constant temperature To is kept at the boundary x ~ = 0. The initial temperatures of the fluid and 
of the plate are also equal to To. 

The solution of this problem follows from the results obtained in [7] and can be represented as 

t co sin(/3nx) exp(  
0(x, t) = 2H ~ J n=l c~ + H2 + H} q(r)exp(j32"r)dT" (1) 

0 

Here/in are the positive solutions of the transcendental equation 

/3, tan/3, = g .  (2) 

The nondimensional parameters in Eqs. (1) and (2) are determined by the coordinate x = x ' /L ,  the time 
t = kt ' / (p,csn2),  the intensity of heat generation q = QL/[k(T1 -To)],  the temperature 8 = ( T - T o ) / ( T 1  -To),  
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and by the ratio of the heat-accumulating capacities of the plate and the fluid H = pscsL/(Mfcl)  , where p., 
is the plate density and 7'1 is an arbitrary constant temperature used for normalization. 

Let us consider the following optimization problem. The intensity of heat generation in the fluid which 
is assumed to be a piecewise continuous function of the time t and can vary from a minimum value Umi n to 
a maximum value Um~x is used as a control parameter. The minimum (maximum) value corresponds to the 
minimum (maximum) power of a heater. We seek to maximize the amount of heat accumulated in the plate 
by a given time, which corresponds to a process duration with the following constraints: the amount of heat 
which can be generated in the fluid and the duration of the process are fixed. 

Mathematically, the problem considered is formulated as follows. One needs to find a function ~(t) that 
maximizes the functional 

1 

] O(z, t f) dz -~ max, (3) ~(q) 
0 

where the function 0(z, t f) is defined by Eq. ( l i  under the constraints 

t! 

f q(r) = const; (4) d~" E 
0 

Umin <~ q(t) <~ Urn= (5) 

(tf  is the duration of the process). 
So lu t ion .  To reduce problem (3)-(5) to the problem of optimal control, it is necessary to transform the 

functional (3). Using Eq. (1) and changing the order of integration in (3), one can transform this functional 
into the following form: 

1 t t  

O(q)=  O(z, t f )dz= q(r)O(r)dr-- ,  max ~( r )=2H~- '~  cosC~,~{B~+/./2+/./} e x p { - B ~ ( t f - r ) }  . (6) 
0 0 n----1 

Problem (4)-(6) is the problem of optimal control. It can be solved with the use of the Pontryagin 
maximum principle (or the equivalent minimum principle in Lagrangian form) [8-10]. This results in the 
following condition for the optimal control parameter t~(t) 

t~(t)[A1 - q/(t)] --* min, (7) 

where A1 is the Lagrange multiplier. Condition (7) with constraints (4) and (5) makes it possible to determine 
the optimal control parameter with the use of the relations 

q(t) ---- 'U, mi n for At - ~( t)  > 0; (8a) 

q ( t )  ---- t t rnax f o r  A 1 - -  ~ ( t )  < 0.  (8b) 

Relations (8a) and (8b) include the Lagrange multiplier Al whose value is not known in advance. To 
determine it numerically, Eq. (4) is also used. 

Examples of the-optimal intensity of heat generation in the fluid versus the time for various durations 
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of the process are given in Fig. 1. Calculations were performed for Umi n ---- 1, Urea x = 3, H = 1, and E = 2tf.  It 
is seen that when the duration is small (ts = 0.3), the optimal intensity of heating first takes on the maximum 
admissible and then the minimum admissible value. When the duration of the process increases ( t f  = 0.6). 
the behavior of the optimal intensity changes qualitatively. Now it first takes on the minimum admissible 
value, then the maximum admissible value, and again the minimum admissible value. As the duration further 
increases ( t / =  2), the behavior remains unchanged, but the duration of the third interval decreases. In the 
limit, as t f  -* co the third interval vanishes, and the optimal intensity takes on the minimum value at the 
beginning of the process and then the maximum value. 

To understand qualitatively the reason for such changes in the behavior of the optimal intensity of 
heating, we consider two limiting cases: the duration of the process is either very short or very long. When the 
duration is short, there is no loss of heat through the boundary z' = 0, and the first (maximum-minimum) 
type of behavior is advantageous. This is due to the fact that,  in this case, the t ime of contact of the plate 
with the "hot" fluid is maximum. On the contrary, when the duration is long, the maximum intensity of heat 
generation should occur at the end of the process. Otherwise, almost all heat would be lost in passage through 
the boundary x' = 0. For the mean duration of the process, the maximum generation intensity should occur 
somewhere between the beginning and the end of the process, which causes the min imum-maximum-minimum 
type of behavior. 

It is interesting to compare the values of the functional (I)(q) of the optimal function (~(t) and of the 
function 

q*(t)  = E / t  I = coast. (9) 

The function q*(t) corresponds to a constant intensity of heat generation during the process and, 
clearly, satisfies the constraint (4). The ratio ~(4)/4~(q*) is the gain in energy which is obtained when the 
optimal intensity of heat generation in the fluid is used instead of the constant intensity of heat generation. 
Figure 2 shows this gain versus the process duration for various values of the parameter H that characterizes 
the ratio of the heat-accumulating capacities of the plate and the fluid. Calculations were carried out for 
Umin = 1, Umax ---- 3, and E = 2TI. It is seen that the ratio ~(gl)/(~(q*) first decreases and then increases to 
an asymptotic value which does not depend on the parameter  H. This result makes it possible to hypothesize 
that the ratio (~(Cl)/(~(q*) tends to an asymptotic value as t f  ~ oo for any regime such that the amount of 
heat E which can be generated during the process is proportional to its duration t I. 

We shall find this asymptotic value in the general formulation. Let the upper and lower boundaries of 
the interval of admissible control parameters be, respectively, Umi n and Umax- The minimum and maximum 
values of E are then determined by the expressions E m i n  = Umintf a n d  E m a x  = Umaxtf. We assume that the 
parameter E is proportional to t f: 

E = Emi n "Jr" E m a x -  Emi" = tf  [Umin -[- Umax-  Umin'] (03 > 1). (10) 
03 L 03 ] 

425 



tim r  
t i n c t  

h, accordance with Eqs. (6), (9) and (10), we have 

tI 

= U m i  n -~- U m a x  - -  U m i n  2H 
02 = /32 cos/3,{/32 + H 2 + H} 

I - cos/3, exp{- /32 ( t / -  r)} d7 
cos/3,{/3 2 + H 2 + H} 

(ll) 

On the other hand, it follows from the analysis of Fig. 1 that, for t/  --* ~ ,  the optimal intensity of 
heat generation in the fluid can be represented in the form 

02-1  
q ( t )  = Umi n for t < t l  ; (12a) 

02 

02--1 
O(t)=Umax for t > t  I ~  (12b) 

OJ 

The function 0(t), which is determined by Eqs. (12a) and (12b), clearly satisfies the constraint (4) if 
the parameter E is determined by Eq. (10). 

From Eqs. (6), (12a), and (12b), it follows that 

, s (0,-1)/~, 
( f oo 1 -- cos/3n e x p { _ / 3 2 n ( t i _ v ) } d ~  " 

lim ~(~) = lim Umin2H Y~ cos/3,{/3 2 + H 2 + H} 
t ]--*c~ t f - '~co 0 n = l  

t I 
[ co 1 --  cos/~n ~ oo 1 /3n + j = = = 2 H  -2 -cos (13) 

.= :  .=13,  cos/3, {/3~2 + H2 + H } '  ,! ( . , -x)/ . ,  

and, from Eqs. (11) and (13), it follows that 

lim @({) / (  - ) .  (14) 'I--co 4,(q*) = qmax qmin d- qmax w qmin 

= 1, Umax = 3, and w = 2 [according to Eq. (10), this results in the relation For example, for umin 
E = 2Tf], Eq. (14) yields 

lim ~(~) = 1.5, t1-*co 

which coincides with the result obtained in Fig. 2. For the parameters of Fig. 2, the accumulated amount 
of thermM energy by the optimal intensity of heat generation is thus 1.5 times greater than by the constant 
intensity. 

Conclusions .  In the problem considered, it has been found that there exist two qualitatively different 
types of behavior of the optimal intensity of heat generation. When the duration of the process is short, the 
optimal generation intensity first takes the maximum admissible value and then the minimum admissible value. 
As the duration increases, the behavior of the optimal intensity changes. Now it first takes on the minimum 
admissible, then the maximum admissible, and again the minimum admissible value. The relative duration 
of the third interval decreases with increasing duration of the process. In the limit, when the duration tends 
to infinity, the optimal generation intensity first takes on the minimum admissible and then the maximum 
admissible value. 

It has also been found that, in the case of a prolonged process, the gain in energy obtained at the 
optimal intensity of heat generation tends to an asymptotic value, which is not dependent on the ratio of the 
heat-accumulating capacities of the plate and the fluid. 

The author is grateful to the Humboldt Foundation (Germany) for financial support of this work. 
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